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Abstract

We present several results on the leader-following (LF) paradigm in the formation flying
of multiple spacecraft in free space. In this direction, ideas from elementary graph theory
and linear matrix inequalities are combined with logic-based switching to shed light on the
various control designs which are feasible using the leader-following mechanism for various

formation scenarios.
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1 Introduction

Formation flying (FF) has been identified as an enabling technology for many of the NASA’s
215 century missions, among them, the Deep Space 3 and the Terrestrial Planet Finder.
Formation flying involves flying a group of spacecraft in a particular pattern while maintaining
precise (but often time varying) relative position, velocity, attitude, and angular velocity, with
respect to each other (7], [14]. Since traditional spacecraft control is often concerned with
measuring and maintaining the above quantities for a single spacecraft with respect to an
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inertial reference frame, the analogous FF control and estimation problems are often an order"

of magnitude more challenging than those encountered traditionally for a single spacecraft [2],
(9], [16]. In order to make the FF control problems at least similar to the single spacecraft
case, an approach based on leader-following has been proposed by Wang and Hadaegh [15].
The basic idea in leader-following (LF') is to designate a particular frame (or multiple frames)
in the formation as the reference frame(s) and measure and control the states of the rest of

the formation with respect to them.
The purpose of the present paper is twofold. First it is shown that LF can naturally be

. given a graph theoretic formulation, and by doing so, we are able to obtain non-trivial results

on some of its basic properties. We then derive simple control laws for LF using linear matrix
inequalities (LMIs) [4]. These control laws are subsequently employed in the second part of
the paper to propose logic-based switching schemes for the formation control.

The outline of the paper is as follows. In §2 the notation and the relevant mathematical pre-
liminaries are presented, among them, certain facts on elementary graph theory, LMIs, hybrid
and switching systems. §3 is devoted to leader-following and its graph theoretic interpretation.
Simple control laws are then derived in §4. In §5, §6, and §7, the control laws derived in §4
are combined with logic-based switching to propose a hybrid control architecture for leader
reassignment, LF capturing, and dealing with control saturations.

2 Notation and Preliminaries

In this section we first describe the notation and then provide some elementary facts and
notions on graphs, point mass dynamics, LMIs, and hybrid systems, which shall be used in the

subsequent sections.

2.1 Notation

Formation flying consists of flying a group of spacecraft in a particular pattern. To be able
to express the time evolution of the formation and design the corresponding control laws, it
is convenient that a reference frame is attached to each spacecraft. We shall always assume
that these reference frames are induced from a dextral of three orthonormal vectors. Let the
formation have n spacecraft labeled as 1,2,...,n. Let F1 denote the reference frame attached
to the i-th spacecraft; F! on the other hand shall designate the inertial reference frame. For
the inertia and the mass of the i-th spacecraft we use I' and m' , respectively. The force
and torque acting upon i are denoted by fi and 7' ; for the mass normalized force we used

o= £;— The time derivative with respect to F' shall be denoted by Ed?,_-; likewise, 3"; will

be used for the time derivative with respect to FI . rii denotes the position of the origin of
F' with respect to FJ ; ri is the position of the origin of F* with respect to F! . The desired
position of the origin of F¥ with respect to FJ shall be denoted by ry , and by ri when j =L



The velocity of the origin of % with respect to FJ , the velocity of the origin of F* with respect
to FI, the desired velocity of the origin of F! with respect to .7-'1 and the desired velocity of -
the origin of F1 thh respect to F1 | shall be denoted by #¥ , v , v}i , and v} , respectively.
The vector [r v! ] shall be referred to as the state of the i-th spacecraft and will be denoted
by z! . Similar notations are used for the attitude and the angular velocity of Fi with respect
to Fi. q” and wY are the attitude and the angular velocity of F* with respect to FJ and
q; and wy are the desired angular velocity and attitude of F* with respect to Fi . All other
notations are standard: R" denotes the real Euclidean space of dimension #; ||.||o, and ||.|| are

.. used for the infinity norm and the 2-norm for vectors and matrices. The cross product matrix

induced by the vector z = [z} z; 23]’ is the matrix,
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2.2 Elementary Graph Theory
A graph G = (V, E) consists of a finite nonempty set V' of vertices and a finite set of edges,

E [3]. The cardinality of V is called the order of G. The graph G is called undirected if

every edge is an unordered pair of distinct vertices; if the edges correspond to an ordered
pair of distinct vertices then G is called directed. We shall represent an edge in a directed
graph with the end vertices labeled as v and w, as [v, w]; similarly {v, w} is used to denote the
corresponding edge in an undirected graph. We say that the edge [v, w] (or {v, w}) is incident
on v and w. A vertex which is not incident to any edge is called isolated. Two vertices that are
connected by an edge are called adjacent vertices. The set of adjacent vertices of the vertex w
is denoted by I'(w).

The degree of a vertex is the number of its adjacent vertices. A path from v! to v* is the
list of vertices [v!,v?,...,v*] such that [v',v"*!] € E,forall i=1,...,k — 1. If for every two
vertices in a graph there is a path connecting them, then we call the graph connected. The
path is called simple if all of its vertices are distinct. A path is a cycle if ¥ > 1 and v! = v¥,
and a simple cycle if in addition, v?,...,v*"! are distinct. A graph without a cycle is called
acyclic.

We say that G’ = (V/,E") is a subgraph of G=(V,E)ifV'CVand E'C E. Atreeis
a connected graph that contains no cycles. A spanning tree of a graph G is a subgraph of G
which is a tree and whose vertices are a subset of V.

A path P in a directed graph is a sequence of vertices (v!,...,v*), ¥ > 2, and a corre-
sponding sequence of k — 1 edges such that the i-th edge in the sequence is either [v',v'*!]
(in which case it is called a forward edge of the path), or [v*!,v'] (in which case it is called
a backward edge of the path). We denote by P* and P~ the sets of forward and backward
edges of P; the vertices v! and v* are called the start vertex and end vertex of P, respectively.
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2.3 Elementary Dynamics: Inertial and Moving Frames

The dynamics of a point mass in an inertial reference frame is described by Newton’s second
law as,

dr f

_—=

di? m

where r, f, and m denote, respectively, the (inertial) position, the force, and the mass of the

. point mass.

If the coordinate frame where positions and velocities are measured is itself rotating or
accelerating, then the equations of motion are modified to reflect such a motion. Recall that
the first and the second derivative of a vector 4 in FI and F! are related by the relation,

a4 _da i x A, (2.1)

where wi is the angular velocity of F1 with respect to FI . In particular,

dot  dwt | i dut
@ =@t =g (22)
stating that the rate of change of the angular velocity is independent of the frame of reference

where it is measured.
Differentiating both sides of (2.1) with respect to FI , we obtain,

?A  d*A  dot

. dA . .
TS At XA X i xWix ), (2.3)

In (2.3), the second, third, and fourth terms on the right hand side of the equality sign, are
referred to as the angular, Coriolis, and centripetal acceleration, respectively.

One can therefore write the equation of motion in the moving reference frame F1 as,

d*r  dut dr
% x —
dt2+d xr+ xdt +uix(Wixr)=

When deriving control laws for each spacecraft in the formation we shall consider the
situation where the control is always a function of the error in the state of the spacecraft; when
this error is in fact the measured state by the controller, the LMI (??), or the SDP (?7)-(??)
can be conveniently used to come up with a stabilizing control law as outlined above.



2.4 Hybrid and Switching Systems

A hybrid dynamical system is a system whose time evolution is governed by a combination of
logical (or discrete), as well as continuous variables (1], [5], [6], [8], [11], [13]. In particular, an
autonomous hybrid system can be represented in the form of,

& = f(z(t),0(¢)),
a(t) = v(z(t),o(t7)),

* where z(t) € R", and o(t) belongs to a discrete set N'. Here for each o, f(.,0): R".—> R" is

a globally Lipschitz continuous function and v : R X N/ — N describes the dynamics of the
finite states. The notation o(t™) indicates that the finite states are piecewise continuous from

the right.
Similar to an autonomous hybrid system, a controlled hybrid system can be represented in

the form,

z = f(z(t), a(t), u(?)), (2:5)

o(t) = v(z(t), o(t7), u(?)), (2-6)

with the exception that u(t) € R™ and the definition of f and v are modified accordingly. It is
not hard to see that switching between various controllers is in fact a special class of controlled

hybrid systems; we present few such switching examples in the context of formation flying later
on in the paper.

3 The Leader-Following Graph!

Leader-following (LF) refers to a scenario where a reference frame, or a set of reference frames
are designated such that the desired spacecraft positions in the formation are expressed relative
to them.? Before we make the notion of LF more precise, we state the following definitions.

Definition 3.1 The formation pattern of a group of n spacecraft, 1,...,n, is the vector,
P(t) := [ri(2),...,r®()] € R>*".
Definition 3.2 The formation configuration of a group of n spacecraft, 1,...,n, is the vector,

C(2) := [r(2), v (), ..., 7%(t), v*(t)) € RE*".

!There are some more graph theoretic results which will be added to this section in the final version of the

paper.
2A group of spacecraft whose desired positions are expressed with respect to an inertial frame is thus an

special case of LF.




The desired formation pattern and configuration at time ¢ can naturally be defined as,
Pa(t) := [rg(t),...,r3(1))', and Ca(t) = [r3(2),vd(2),.- ., r2(2), v3(2)]';

such a specification requires that every spacecraft in the formation has knowledge of its inertial

position and velocity at all times. However, what often is of interest in the context of formation

flying is the relative spacecraft positions and velocities. We are thus led to express Py(t) (or

Ca(t)) in such a way that for a set of indices K C {1,...,n}, r(t) is specified as a function of
rl, h(rl(t)), for all k € K and some ! € {1,...,n}/K, where,

h: R - 83,

is a piece-wise twice differentiable invertible map. Given that h is an affine map, r,',‘ can be
expressed as,

rk(t) = H¥(t) + A¥(2), (3.7

for a matrix A € R3*3 and A¥(t) € R3. In the subsequent sections we shall generally consider
the situation where H is the identity matrix.

Definition 3.3 i is the leader of j if rfi is ezpressed as h(ri) for some piece-wise twice differ-
entiable invertible map h : ®3 — R3.3

Note that LF is simply an assignment and reflects how one decides to represent the desired
formation pattern and configuration. LF can conveniently be represented in terms of a graph
as we now proceed to show.

Let Gor = (Vir, ELF) be a directed graph of order n, with Vr = {1,...,n} and [i,j] €
Err if and only if i is the leader of j. We call Grr the LF graph of the formation. Closely
related to the LF graph is the communication graph, G¢ = (Vg, Ec). Gc is a directed graph
with Vo = Vpp; however [i,j] € Ec if and only if i can send real valued messages to j via
a communication protocol. At times, it would be more convenient to make G¢c undirected,
particularly in the situation where [, j] € Ec implies that [j,i] € Ec.

The LF assignment is closely related to another concept referred to as dependency.

Definition 3.4 j is dependent on i if wl is a function of z'.

Dependency is the result of a situation where the control action of once spacecraft depends on
the states (inertial positions and velocities) of another (set of) spacecraft in the formation.

Proposition 3.1 Ifi is the leader of j, then j is dependent on i.

3 Although the diffeomorphicity of A is not necessary for the purpose of defining the leader-follower assignment,
this qualification shall be used for deriving control laws in §5.

'x*ﬁ;’g. -



Proof: Observe that for some A : 3 — R3,
w(el() = wi(zyt) - (1)
w(h(z'(t)), 7(2)).

Definition 3.5 j is strongly dependent on i if w) is a function of z* and u'.

. Associated with the set of dependent and strongly dependent vertices of G, one can define

the corresponding subgraphs Grr/p and Grr/sp. The graphs Grr, GLF/p, and GrFy/sp, by
the virtue of being constructed from the leader-follower assignments and the associated data
dependencies, have various properties, few of which will be stated and proved below.

Proposition 3.2 Gz sp i3 a tree.

Proof: It suffices to prove that Gz sp has no cycles. Suppose that it does: then there are
indices i and j such that 4! is a function of wJ, and vice versa. In this case, neither expression
can be evaluated without knowing the other, thus establishing a contradiction. a

Motivated by the property of GLr/sp, and in order to avoid defining LF graphs which are
inconsistent or contain repeated information, we define a valid Grr to be a spanning tree

subgraph of G F.
Given that there are no isolated vertices in the G r, and using an elementary property of

trees, we obtain the following result.

Proposition 3.3 If GLp contains a valid Grp, then the number of LF assignments has to be
greater than or equal ton — 1.

4 Control Objective?

The control objective is to design a controller for each spacecraft in the formation such that
the origin is the globally asymptotically stable equilibrium point of,

[ICa(2) = C(V)lco

in face of possible constraints on the control and the formation states, disturbances and model
uncertainties. Collision avoidance and saturation limits are two primary examples of such

constraints.

YA constraint of the form

min/ iCa(t) = C(&)}|3 dt,
0

for some p > 1 will be considered in an upcoming paper.

-3
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5 Simple Control Laws for LF

In this section we go over some simple control which are derived based on the state feedback
synthesis procedure discussed in §2.4 . These control laws can be used for the control of the
formation pattern and configuration under two different measurement scenarios. First, we
consider the situation where inertial measurements are available to both the leader(s) and the
follower(s); then we comment on the case where the follower(s) measurements are done with

respect to its own moving reference frame.
" 5.1 Inertial Reference Frame Measurements

Let i be the affine leader of j (with H#® = I) during the time interval [tg,s]. The desired
position of j is thus expressed as,

r(t) = ri(t) + h(t), to <t <ty
The error expression for j is then simply,
(1) = ri(t) - ri(t) = ri(t) — ri(2) + AU(2).

Assuming that AU is twice differentiable on [to,;], the above expression can be differentiated
twice with respect to the inertial reference frame to obtain,

d’;tlz(t) wi(t) — Wi(2) + d’h (t)_ 5.4)
By letting,
wi(t) = vl + ‘Ph L O (5.9)
one obtains,
de(t)
= —F) (5.10)
The equation (5.10) can be expressed as,
Al Bi
' (1) 0
nty | _|0 I}z ;
[z‘;(t)]‘[o 0} [z:(t)J+[_]]",(t)’ (5.11)

where z,(t) = ei(t), z3(t) = %‘iﬂ, and the matrices Aj and BI are defined as suggested by
(5.11).
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The control design based on the state feedback synthesis for LF is thus reduced to finding
the term for u‘ using the approach discussed in §2; in particular we proceed to solve,

AQ + Q(AYY + BlY + Y'(BYY < 0, (5.12)
Q@>0, (5.13)

and let K4 = YQ~!. Hence, given that i is the affine leader of j (with Hil = I), the control
law for j has the form,

d’h (t)

20 =)+ TR0 L yod, wety. (5.14)

Employing the control law (5.14) by the follower spacecraft j guarantees that the ongm is the
globally asymptotically stable equilibrium of the error function z(t), and thereby, r(t) — rj(t)
as t — oo.

5.2 Moving Reference Frame Measurements

We shall now briefly go over the situation where the measurements are done in the moving
frame attached to the follower spacecraft. Feedback linearization is then used to reduce this
case to that considered in §5.1.

Again let i be the (affine) leader of j during the time interval [to,%f]. Contrary to §5.1
however, we would like to obtain an expression which describes the time evolution of & in 3

(as opposed to FI). Proceeding from (5.8) and keeping in mind (2.3), one obtains,

ﬁzjﬁt) + d“;f‘) ei(t) + (1) x d"’(t) de(t) | i(t) x (W(t) x e(2))
= (ui(2) — wi()) + L) "2" ), (5.15)
The last term on the right hand side of (5.15) can of course be represented in FJ as,
P) | ) | e 4 2w’(t)‘x "" ( ) 4 wi(t) x (w(2) x AU()). (5.16)

dt

The rate of change of the angular velocity wd with respect to F3 (or F! ) is related to the
applied torque on the spacecraft via the Euler’s equation,

dtj

d, iy dwd(®) | e o s 17
Z(pwi(n) = P2 + () x (Fui(e) = (), (5.17)
i.e.,
L) _ (1) - 0 x (Hedle). (5.18)
9
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Let z(t) = él(¢), z(t) = %ﬂ, and z3(t) = w¥(t). The dynamics of j can thus be represented
as, :

n(t) = z(), (5-19)
2(t) = -2z3(t) x z(t) - (I"')"l(rj(t) — 23(t) x Dz3(t)) — 23(t) x (23(t) x z1(2))

+ - v+ S, (5.20)
z'3(t? = (I)7Y(7(t) - z3(t) x Pzs(t)). , (5.21)

) The differential equations (5.19)-(5.21) describe a nonlinear dynamical system whose state

represents the evolution of the position error, position rate error, and angular velocity of the
follower spacecraft, in the follower’s moving coordinate frame. In principle, one would like to
choose the control action such that the origin is the globally asymptotically equilibrium point
of [z, z2]. For this purpose we consider two distinct situations.

1. j has constant angular velocity: Consider the case where,
Ti(t) = z3(t) x Pzs(t), (5.22)

i.e., the angular velocity of j during the LF remains constant. The dynamical equations
(5.19)-(5.20) can then be written as,

21.(t) = 22.(t), (5.23)
2(t) = Whz1(t) + Wazy(t) + u'(t) - w(2), (5.24)
where,
Wy = 2325 — ||23])3], and W, = -2z3x.
Consider again the change of variable of the form,

d2hi(t)
dr?

W(t) = vi() + +@(),

then,
Al Bl

eyl _1 o0 I z1(t) 0 | i, 5.95

[h(t)}—[wx Wz][zz(t) R (529

Define the matrices AJ and B’ as suggested above. We can then proceed as in §5.1 and
solve the LMI,

AQ + QA + BiY + Y'(BiY <0, ' (5.26)
Q>0 (5.27)

10



and let,

d2hi(t)
dt?
note that only the definition of the matrix A4 has been modified from §5.1 to reflect the
fact that the error vector is now measured in the moving coordinate frame attached to
the follower.

2. j has non-constant angular velocity: If the angular velocity of j does not remain constant
during the LF, then we can use feedback linearization to linearize the dynamics in such
a way that the LMI approach above can still be adopted. For this purpose it suffices to

w(t) = 4'(2) + +YQ7'A(t), to<t<ty

let, _
ad = —223(t) x z(t) — () ~Y(ri(t) — za(t) x Pz(t)) — z3(t)(23(t) X z1(t)), (5.28)
and let,
w(t) = ui(t) + f%’;t—) + ®(t) + S(t);

as before the expression for #(t) is found be solving the LMI (5.12)-(5.13).

In both scenarios considered above, the control law for the leader spacecraft i can also be based
on the state feedback synthesis. For this purpose it suffices to let,

d?ri(t)
dez '

where the matrices Y and Q are found from the LMI (5.12)-(5.13) by letting,

ee[i {] e re[ 2]

however z is now simply ri(t) — ri(2).

W(t) = YQ lz(t) +

6 Changing the LF Graph: Leadership Re-Assignment

The designation of the leader, aside from its associated hardware and software considerations
and the required communication protocol, is rather arbitrary. It is thus of interest to consider
a situation where the leader assignments are time varying. In this direction, we would like to
study how the formation control performance is effected by changing the LF graph as,

1 2
Grp — Gir — Glr — ...

11




Consider for example a two spacecraft formation; let G§5 and G5%! be defined by,
Gir=({ii}) i), and GL{E = ({i,5}.00:i)).

G% ¢ corresponds to the situation where i is the leader of j and therefore (assuming an affine
leadership),

r(t) = ri(e) + B,

- In this case the control law of §5.2 (when inertial meuurements are availabk) can be xmple-
mented as,
wi(t) = K2(t) + —4—“22,‘,(‘),

w(t) = KA(t) + wi(t) + S dzhﬁ a0}

where 2i(t) is the state error observed by i at time t. Since A(t) = —Afi(t), for G""’1 the
control law can be expressed as,

. . 21i
) = K40 + 60 + Tl = ke ol - T2,
w(e) = k() + L8,

Thus, as Gy r changes, the formation control mechanism can be modified according to the
logic-based switching mechanism shown in Figure 1.

7 LF Capturing

We consider a situation where a free spacecraft is captured by an LF; translated in terms of
GLF, this corresponds to the case where an isolated vertex is connected to Grr (Figure 2).
Building on the control laws developed in §5, the corresponding block diagram representing the
switching control system can be drawn as shown in Figure 3. Note that we have considered
the situation where the isolated spacecraft is not assigned as a leader; if this is in fact the
case, then its control law will not be changed from when the spacecraft was free. However, in
this latter situation, the control law for the new followers of the new leader spacecraft changes

according to the procedure presented in §6.

12
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Figure 1: Switching for Leader Reassignment
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Figure 2: Switching for Leader Reassignment
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Figure 3: LF capturing

8 Control Saturations

We now examine the scenario where the j-th spacecraft, j, following i in an LF, is also avoiding
control saturation by switching between two or more controllers. In order to simplify the
presentation, we shall assume in the rest of this section that,

d?h¥i(t)
=0, t<t<ty.
ar . - RSty

Recall that following the discussion of §5 (when inertial measurements are available), the state
error dynamics of j can be represented by,

3(t) = (A + BK)z(t),

where,

_for [ o vl
A—[O 0], B_[—IJ, a'nd K_YQ !

the matrices Y and Q are found from solving the LMI,

AQ+QA’+BY +Y'B' <0, @>0.

14
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Let m denote the 2-norm of the maximum allowable mass normalized force on each spacecraft
in the formation; that is, we require that,

lb@ S m, to<t<ty. (8.29)

Note that although (8.29) imposes a constraint on the control vector expressed in the iner-
tial frame, it directly translates into a requirement expressed in the spacecraft body frame
via an orthogonal transformation (recall the invariance of the 2-norm under an orthogonal

_ transformation). Now since,

‘ w(t) = Yb-lz(t) + ui(2),
we require that,
W)+ Y@ 2(t)| < m, to<t<ty. (8.30)

Note that although j has no prior knowledge about the values of u' , it has to choose Q and
Y such that (8.30) is satisfied. To cope with this lack of knowledge on the values of ui(t),
we proceed to present a controller switching mechanism which satisfies the control constraint
(8.30), in face of the lack of a priori knowledge of the values of ui(t) by the follower spacecraft.
The only assumption which is required for the proposed approach to work is that,

'@l <m, to<t<ty.
Starting from (8.30), we work instead with the stronger requirement,
IYQ ' 2(t)ll < m — [lui(t)]| = m' (¢), to<t<ty.
Let,
& = {z: 7Qlz <1},

where @, is a positive definite matrix which is chosen such that z(0) belongs to &;,, by solving
the LMI,

1 Z(0)
{ A0) On ] >0, Qi >0. (8.31)

Suppose that we solve the LMI (8.31) in conjunction with,

AQu + QA + BY,, + Y, B’ <0. (8.32)

For small values of §t, if z’(to) = r‘(to + §t) for t € [to,to + 8t] and we use the controller
K: = Y, Qr', then it would be the case that z(tg + 6t) € &, In fact, if o (t) remains

15




constant, then z(t) € &, for all ¢t € [to,ty]. In this situation, in order to guarantee that the
saturation constraint is not violated, we can augment the LMIs (8.31) and (8.32) with an LMI,

[?,: ml‘/t(;t)]zo’ (539
since [4],
'“ maxlP(l = maxl%Qe =0
< maxI¥aQg ()
< Imar( Q7YY QM)

The inequality (8.33) is simply an “LMI way” of guaranteeing that,

Amac( Qi 2V Y Q%) < mi(2).

to

Now, the problem is that in general, one cannot guarantee that z(to + 6t) € &, nor does the
above discussion addresses the situation where m'(t) does not remain constant. We are thus
led to incorporate logic-based switching in conjunction with LMIs (8.31)-(8.33) to address both

of these scenarios. Let,

m' o= min (o))
solve the SDP,

‘ Q.f,%, - a (8.34)
Ang + ngA' + BY:, + Y‘;B’ < al, (8.35)
Qi >0, (8.36)

1 Z(0)
>0, 8.37
[ (0) Q@ ] 2 (8.37)
[ e, Y='g ] >0, (8.38)

to M

a <0. (8.39)

We shall assume, without loss of generality, that the above SDP is feasible. Let us now proceed
from time to and consider the various scenarios which can occur at timé ¢o + §¢:

16




ik

1. 2(to + 6t) € &, and mi(t) has remained constant: In this case it is guaranteed that,

1Ko 2(to + 80| = [|Yer Q" (20 + 62)]| < m(t + 62) = mi(2);
thus the control constraint is not violated if the same control law used at time ¢, is
applied at time ¢ + 6t.

2. z(tg + 6t) € A however m! has changed over the interval [to, to + 6t] For this case we
can proceed in two directions: .

(a) We consider the trajectory as staying in the ellipsoid £,; however we can modify
the controller gain K, by changing the matrix Y,:

min S (8.40)

y¢°+‘hp
BYi 45t + Y 1508 < —(AQsy + Qo A') + BI, (8.41)
Qto Yto+5t
> 42
[ Yio+6: mi(to + 6t) 0. (8.42)

The state feedback gain can now be set as,
Kiorst = Yior5:Qy) - (8.43)
Proposition 8.1 The SDP (8.40)-(8.42) is feasible.

Proof: Given that mi(tp + 6t) > 0, (8.42) is equivalent to,
1
Qi 2 m%ml’tom-
Since Q;, > 0, there always exist a matrix Y;, s such that (8.42) is satisfied. O

(b) Given that mi(to + §t) > mf, we might be able to find a smaller ellipsoid where the
error z(to + 6t) belongs, by solving the following SDP:

min a (8.44)
Qfo+‘hyto+‘ha
AQe 45t + Q¢°+5¢A, + BY;p 45t + Yt::+5!Bl <al, (8.45)
Qe+t > 0, (8.46)
1 2'(to + 6t)
20, 8.47
[ z(to +6t)  Qeoese = (8.47)
Quo+st  Yigise >
i 07 8-48
[ Yio+st m' - ‘ ( )
a<0, (8.49)
Qeo+st 2 Qto- (8.50)
17
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Lemma 8.2 Given that z(t) € &, for all t € [to,t], both of the above controller
switching mechanism result in a globally asymptotically stable hybrid dynamical sys-
tem which is guaranteed to satisfy the control constraint.

Proof: Provided that mi(¢p + 6t) > m! and that 2(t) € &, it is guaranteed that
the optimal value of 8 in (8.40)-(8.42) is negative. Now let,

A; = A+ BK,, S
and P, = Q;'. We observe that, |
A‘Pgo + PgoAg <90,
Pgo >0

for all t. In order words, V(z) = z'Pz is a common quadratic Lyapunov function
for, .

Z(t) = Att(t), t=to,% + 5t, .-

implying that the origin is the globally asymptotically stable equilibrium point for
any switching sequence described above. O

(c) z(to + §t) & &, whether or not m! has remained constant : This scenario arises when
the error at time to + &t leaves the ellipsoid generated to bound it at time ty. For
this case, we proceed to solve a new SDP,

mn @ (8.51)
Qto+6hyto+6ha
AQio4st + Quo+stA' + BY o150 + Yoy 1508’ < el (8.52)
Qo+5¢ > 0, (8.53)
1 2(0)
> 0, 8.54)
[2(0) Qto+5t ] = (8:54)
Quo+st Yiguse | 5
: 0, 8.55
[ )/to-}-&! Iﬂl - ( )
a <0, (8.56)

in conjunction with another LMI which shall make the analysis of the resulting
switching mechanism more manageable,

0< Qto+5t < Qo (8.57)

18
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Figure 4: Ellipsoids for Control Switching

In this case we let,
Kyt = Yto+6tQ;;§,,5¢-
Using this scheme, we get a sequence of positive definite matrices,
0< @, £Qtpy £...2Q <@t (8.58)
such that for all ¢ € [ty, /] and some g,
2(t) € &, = {z: ZQ;' <1} (8.59)

let k be the least index for which (8.59) holds. By the nested-ness property (8.58)
such an index is unique.

Proposition 8.3 The control switching mechanism proposed above results in a hybrid
dynamical system where the origin is its globally asymptotically stable equilibrium point.

Proof: The trajectories of the error can either remain in the ellipsoid which was generated
last, or it can be put in the larger ellipsoid which contains the previous ellipsoid. Since
the ellipsoids that are generated are nested, we are guaranteed that the trajectory of
the error eventually visits and remains in & for some k, at which point, it will converge
exponentially to the origin (Figures 4 and 5). O

9 Simulation Results

In this section we provide simulation results for few scenarios which demonstrate the types of
switching described in the paper.
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Figure 5: § checks whether z € &;, and switches the controller accordingly

Figure 6: Leadership reassignment
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LF cagruring

Figure 7: LF capturing

Figure 6 depicts the scenario where the leadership assignment is changed between the
spacecraft in a two-spacecraft formation; the follower (either 1 or 2) both before and after the
LF reassignment, is required to track a circular path with respect to leader.

Figure 7 demonstrates the LF capturing scenario, where a free spacecraft is captured by
the LF and is thus required to have a certain deviation from the leader after the capturing
time. Finally, Figures 8-9 show an example where the follower’s control law is switched in
order to avoid control saturation as the result of a relatively high control input used by the

leader. :

10 Conclusion

We presented several new results on the formation flying control architecture based on the
leader following strategy using ideas from graph theory, linear matrix inequalities, and logic-
based switching. In this direction, the stability and the convergence properties of the resulting
hybrid systems were given particular attention.
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Figure 9: follower switches controller to avoid saturation at ¢ = 5 sec

22

W
g

]



References

(1] P . Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems 4. Lecture
Notes in Computer Science. Springer-Verlag, 1997.

(2] R. W. Beard and F. Y. Hadaegh. Finite thrust control for satellite formation flying with
state constraints. In American Control Conference, 1998. .

(3] B. Bollobds. Modern Graph Theory. Springer, 1998.

(4] S. P. Boyd, L. EL Ghaoui, E. Feron, and V. Balakrishnan. Linear Matriz Inequalatm in
System and Control Theory. SIAM, Philadelphia, 1994.

(5] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and
hybrid systems. IEEE Transactions on Automatic Control, 43(4):475-482, 1998.

(6] R. W. Brockett. Hybrid models for motion control systems. In H. L. Trentelman and
J. C. Willems, editors, Essays in Control, pages 29-53. Birkhauser, 1993.

(7] A. B. Decou. Multiple spacecraft optical interferometry- Preliminary feasibility assess-
ment. Technical report, Jet Propulsion Laboratory, 1991.

(8] J. Malmborg, B Bernhardson, and K. J. Astrom. A stabilizing switching scheme for
mutli-controller systems. In Proceedings of the IFAC World Congress, San Francisco, CA,
1996.

(9] V. Manikonda, P. O. Arambel, M. Gopinathan, R. K. Mehra, and F. Y. Hadaegh. A model
predictive control-based approach for spacecraft formation-keeping and attitude control.
Technical report, Scientific Systems Company, Inc., 1998.

[10] M. Mesbahi, M. G. Safonov, and G. P. Papavassilopoulos. Bilinearity and complementarity
in robust control. In Recent Advances on LMI Approach in Control. SIAM, Philadelphia,
1998.

[11] A. S. Morse. Control using logic based switching. In A. Isidori, editor, Trends in Control:
A European Perspective. Springer-Verlag, 1995.

(12] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convez Pro-
gramming. SIAM, Philadelphia, 1994.

[13] T. Pavlidis. Stability of systems described by differential equations containing impulses.
IEEFE Transactions on dutomatic Control, 12:43-45, 1967.

23




A

[14) R. Stachnik, K. Ashlin, and K. Hamilton. Space-Station-SAMSI: A spacecraft array
for Michelson spatial interferometry. Bulletin of the American Astronomical Society,

16(3):818-827, 1984.

[15] P. K. C. Wang and F. Y. Hadaegh. Coordination and control of multiple microspacraft
moving in formation. Journal of the Astronautical Sciences, 44(3):315-355, 1996.

(16] P. K. C. Wang, F. Y. Hadaegh, and K. Lau. Synchronized formation rotation and attitude
control of multiple free-flying spacecraft. Journal of Guidance, Control and Dynamsics,
21(6), 1998.

.
&on . b

24

ks
RN




